RJ21R3BA0PT ## DESCRIPTION The RJ21R3BA0PT is a 1/1.8-type (9.13 mm) solidstate image sensor that consists of PN photodiodes and CCDs (charge-coupled devices). With approximately 4 200 000 pixels (2 530 horizontal x 1 659 vertical), the sensor provides a stable highresolution color image. ### **FEATURES** • Optical size: 9.13 mm (aspect ratio 3:2) - · Interline scan format - Square pixel - Number of image pixels: 2 470 (H) x 1 652 (V) - Number of effective pixels: 2 452 (H) x 1 634 (V) - Number of optical black pixels - Horizontal : 2 front and 58 rear - Vertical: 5 front and 2 rear - · Number of dummy bits - Horizontal: 34 - Vertical: 2 - Pixel pitch : 3.10 μm (H) x 3.10 μm (V) - · R, G, and B primary color mosaic filters - · Supports monitoring mode - · Low fixed-pattern noise and lag - No burn-in and no image distortion - · Blooming suppression structure - Built-in output amplifier - Built-in overflow drain voltage circuit and reset gate voltage circuit - Variable electronic shutter ## 1/1.8-type Interline Color CCD Area Sensor with 4 200 k Pixels · Package: 20-pin half-pitch DIP [Plastic] (P-DIP020-0500) Row space: 12.20 mm ## PIN CONNECTIONS #### **PRECAUTIONS** - The exit pupil position of lens should be 30 to 65 mm from the top surface of the CCD. - Refer to "PRECAUTIONS FOR CCD AREA SENSORS" for details. ## **PIN DESCRIPTION** | SYMBOL | PIN NAME | |--|---------------------------------| | OD | Output transistor drain | | os | Output signals | | ∮ RS | Reset transistor clock | | ϕ V1A, ϕ V1B, ϕ V2, ϕ V3A, ϕ V3B, ϕ V4 | Vertical shift register clock | | φ _{H1} , φ _{H2} | Horizontal shift register clock | | OFD | Overflow drain | | PW | P-well | | GND | Ground | | NC1, NC2, NC3, NC4, NC5 | No connection | ## **ABSOLUTE MAXIMUM RATINGS** $(TA = +25^{\circ}C)$ | PARAMETER | SYMBOL | RATING | UNIT | NOTE | |--|-----------------------------|------------------------|------|------| | Output transistor drain voltage | Vod | 0 to +18 | V | | | Overflow drain voltage | Vofd | Internal output | V | 1 | | Reset gate clock voltage | V∳RS | Internal output | V | 2 | | Vertical shift register clock voltage | V_{ϕ} V | V _{PW} to +18 | V | | | Horizontal shift register clock voltage | V∳H | -0.3 to +12 | V | | | Voltage difference between P-well and vertical clock | V PW -V ∮V | -27 to 0 | V | | | Voltage difference between vertical clocks | $V_{\phi V}$ - $V_{\phi V}$ | 0 to +18 | V | 3 | | Storage temperature | Тѕтс | -40 to +85 | °C | | | Ambient operating temperature | Topr | -20 to +70 | °C | | - 1. Do not connect to DC voltage directly. When OFD is connected to GND, connect Vop to GND. Overflow drain clock is applied below 24 Vp-p. - 3. When clock width is below 10 µs, and clock duty factor is below 0.1%, voltage difference between vertical clocks will be below 26 V. ## RECOMMENDED OPERATING CONDITIONS | P | ARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | NOTE | |----------------------|------------------------|--|-------|-------|-------|--------|------| | Ambient operating | g temperature | Topr | | 25.0 | | °C | | | Output transistor | drain voltage | Vod | 14.55 | 15.0 | 15.45 | V | | | Overflow drain clock | p-p level | V∳OFD | 20.7 | 21.5 | 22.8 | V | 1 | | Ground | | GND | | 0.0 | | V | | | P-well voltage | | VPW | -8.0 | | V∳VL | V | 2 | | | LOWlevel | Vøv1AL, Vøv1BL, Vøv2L | 7.05 | -7.0 | 0.05 | V | | | | LOW level | Vøv3AL, Vøv3BL, Vøv4L | -7.35 | -7.0 | -6.65 | V | | | Vertical shift | INTERMEDIATE level | V <i>φ</i> V1ΑΙ, V <i>φ</i> V1ΒΙ, V <i>φ</i> V2Ι | | 0.0 | | V | | | register clock | INTERMEDIATE level | V <i>φ</i> ν3ΑΙ, V <i>φ</i> ν3ΒΙ, V <i>φ</i> ν4Ι | | 0.0 | | V | | | | HICH Inval | V∳V1AH, V∮V1BH | 14.55 | 15.0 | 15 45 | V | | | | HIGH level | V <i></i> | 14.55 | 15.0 | 15.45 | V | | | Horizontal shift | LOW level | VøH1L, VøH2L | -0.05 | 0.0 | +0.05 | V | | | register clock | HIGH level | VøH1H, VøH2H | 4.5 | 4.8 | 5.5 | V | | | Reset gate clock | p-p level | V∳RS | 4.5 | 4.8 | 5.5 | V | 1 | | Mantiant abit wasin | | føV1A, føV1B, føV2 | | 7.40 | | 1-1-1- | 0 | | vertical shift regis | ter clock frequency | føV3A, føV3B, føV4 | | 7.49 | | kHz | 3 | | Horizontal shift re | gister clock frequency | fφH1, fφH2 | | 24.54 | | MHz | | | Reset gate clock | frequency | f∮RS | | 24.54 | | MHz | | - 1. Use the circuit parameter indicated in "SYSTEM CONFIGURATION EXAMPLE", and do not connect to DC voltage directly. - 2. VPW is set below V / VL that is low level of vertical shift register clock, or is used with the same power supply that is connected to VL of V driver IC. - 3. At frame accumulation mode. ^{*} To apply power, first connect GND and then turn on Vob. After turning on Vob, turn on VPW first and then turn on other powers and pulses. Do not connect the device to or disconnect it from the plug socket while power is being applied. ## CHARACTERISTICS (Drive method: 1/30 s frame accumulation) (TA = +25°C, Operating conditions: The typical values specified in "RECOMMENDED OPERATING CONDITIONS". Color temperature of light source: 3 200 K, IR cut-off filter (CM-500, 1 mmt) is used.) | PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | NOTE | |---------------------------------|--------|-------|------|------|------|------| | Standard output voltage | Vo | | 150 | | mV | 2 | | Photo response non-uniformity | PRNU | | | 10 | % | 3 | | Coturation output valtage | VSAT | 450 | 550 | | mV | 4 | | Saturation output voltage | VSAI | 320 | 420 | | mV | 5 | | Dark output voltage | Vdark | | 0.5 | 3.0 | mV | 1, 6 | | Dark signal non-uniformity | DSNU | | 0.5 | 2.0 | mV | 1, 7 | | Sensitivity (green channel) | R (G) | 110 | 140 | | mV | 8 | | Smear ratio | SMR | | -88 | -80 | dB | 9 | | Image lag | Al | | | 1.0 | % | 10 | | Blooming suppression ratio | ABL | 1 000 | | | | 11 | | Output transistor drain current | lod | | 4.0 | 8.0 | mA | | - Within the recommended operating conditions of Vod, VoFD of the internal output satisfies with ABL larger than 1 000 times exposure of the standard exposure conditions, and VsAT larger than 320 mV. - 1. $TA = +60^{\circ}C$ - The average output voltage of G signal under uniform illumination. The standard exposure conditions are defined as when Vo is 150 mV. - 3. The image area is divided into 10 x 10 segments under the standard exposure conditions. Each segment's voltage is the average output voltage of all pixels within the segment. PRNU is defined by (Vmax – Vmin)/Vo, where Vmax and Vmin are the maximum and minimum values of each segment's voltage respectively. - 4. The image area is divided into 10 x 10 segments. Each segment's voltage is the average output voltage of all pixels within the segment. VSAT is the minimum segment's voltage under 10 times exposure of the standard exposure conditions. The operation of OFDC is high. (for still image capturing) - 5. The image area is divided into 10 x 10 segments. Each segment's voltage is the average output voltage of all pixels within the segment. VSAT is the minimum segment's voltage under 10 times exposure of the standard exposure conditions. The operation of OFDC is low. - The average output voltage under non-exposure conditions. - The image area is divided into 10 x 10 segments under non-exposure conditions. DSNU is defined by (Vdmax – Vdmin), where Vdmax and Vdmin are the maximum and minimum values of each segment's voltage respectively. - The average output voltage of G signal when a 1 000 lux light source with a 90% reflector is imaged by a lens of F4, f50 mm. - 9. The sensor is exposed only in the central area of V/10 square with a lens at F4, where V is the vertical image size. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum output voltage in the V/10 square. - 10. The sensor is exposed at the exposure level corresponding to the standard conditions. All is defined by the ratio of the output voltage measured at the 1st field during the non-exposure period to the standard output voltage. - 11. The sensor is exposed only in the central area of V/10 square, where V is the vertical image size. ABL is defined by the ratio of the exposure at the standard conditions to the exposure at a point where blooming is observed. SHARP RJ21R3BA0PT ## **PIXEL STRUCTURE** ## **COLOR FILTER ARRAY** (1, 1 652) (2 470, 1 652) Pin arrangement of the vertical readout clock | ФV3A G B G B G B G B G B | GBGBGBGBGB | |---|---| | ФV1В R G R G R G R G R G | RGRGRGRGRG | | Фvзв G B G B G B G B G B | GBGBGBGBGB | | ϕ_{V1B} RGRGRGRGRG | RGRGRGRGRG | | ФV3B G B G B G B G B G B | GBGBGBGBGB | | ϕ_{V1B} RGRGRGRGRG | RGRGRGRGRG | | Фvзв G B G B G B G B G B | GBGBGBGBGB | | ϕ_{V1A} RGRGRGRGRG | RGRGRGRGRG | | ФV3В G B G B G B G B G B G B G B G B G B G B G B B G B B G B B G B B G B B G B B G B B G B B G B | GBGBGBGBGB | | ϕ_{V1B} RGRGRGRGRG | RGRGRGRGRG | | <i>Ф</i> ∨3B G B G B G B G B G B | GBGBGBGBGB | | ϕ_{V1B} RGRGRGRGRG | RGRGRGRGRG | | Фv3B G B G B G B G B G B | G B G B G B G B G B | | ϕ_{V1B} RGRGRGRGRG | RGRGRGRGRGRG | | Фv3A <mark>G B G B G B G B G B</mark> | [G B G B G B G B G B | | ϕ_{V1B} R G R G R G R G R G | RGRGRGRGRGRG | | ФV3B G B G B G B G B G B | GBGBGBGBGB | | ϕ_{V1B} RGRGRGRGRG | RGRGRGRGRG | | ! | | | : | | | ФV3B G B G B G B G B G В | GBGBGBGBGB | | φν3B G B G B G B G B G B G B φν1B R G R G R G R G R G R G | GBGBGBGBGBGB
RGRGRGRGRG | | | | | φV1B | RGRGRGRGRG | | ΦV1B R G R G R G R G R G R G ΦV3B G B G B G B G B G B G B | R G R G R G R G R G B G B G B G B G B G | | φν1B R G R G R G R G R G R G R G R G R G R G R G B G B G B G B G B G B G B G B G B G B G R G <td>R G R G R G R G R G R G G B G B G B G B</td> | R G R G R G R G R G R G G B G B G B G B | | ΦV1B R G R G R G R G R G R G R G B G <td>R G R G R G R G R G B G B G B G B G B G</td> | R G R G R G R G R G B G B G B G B G B G | | ΦV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φV1B R G R G R G R G R G R G R G R G R G R G R G B G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φν1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φν18 R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φν18 R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | φV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | ψV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | ψV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | | ψV1B R G <td>R G R G R G R G R G R G B G B G B G B G</td> | R G R G R G R G R G R G B G B G B G B G | (1, 1) (2 470, 1) ## **TIMING CHART** #### TIMING CHART EXAMPLE Pulse diagram in more detail is shown in figure 1 to 4 after next page. - Do not use these signals immediately after field accumulation mode is transferred to frame accumulation mode for still image capturing. - 2. Do not use these signals immediately after frame accumulation mode is transferred to field accumulation mode for monitoring image. - * Start the exposure period after 10 ms later that OFDC is high, and finish before charge swept transfer. - * Apply at least an OFD shutter pulse to OFD in each field accumulation mode. ## ①, ①' VERTICAL TRANSFER TIMING [FIELD ACCUMULATION MODE] * 1)' is just before first frame accumulation mode #### 2 VERTICAL TRANSFER TIMING [AT FIRST FRAME ACCUMULATION MODE] ## ③ VERTICAL TRANSFER TIMING [FRAME ACCUMULATION MODE] #### (4) VERTICAL TRANSFER TIMING (AT FIRST FIELD ACCUMULATION MODE) * Do not use the field signals immediately after frame accumulation mode is transferred to field accumulation mode for monitoring image. #### HORIZONTAL TRANSFER TIMING [FIELD ACCUMULATION MODE]-1 * Keep over 1.63 µs when vertical transfer clock pulse is overlapping. #### HORIZONTAL TRANSFER TIMING (FIELD ACCUMULATION MODE)-2 ^{*} Keep over 1.63 µs when vertical transfer clock pulse is overlapping. #### HORIZONTAL TRANSFER TIMING (FRAME ACCUMULATION MODE)-1 * Keep over 3.26 µs when vertical transfer clock pulse is overlapping. #### HORIZONTAL TRANSFER TIMING [FRAME ACCUMULATION MODE]-2 ## CHARGE SWEPT TRANSFER TIMING [FRAME ACCUMULATION MODE] * Keep over 1.22 µs when vertical transfer clock pulse of charge swept transfer is overlapping. ## SYSTEM CONFIGURATION EXAMPLE ## **PACKAGE OUTLINES** ## PRECAUTIONS FOR CCD AREA SENSORS ## 1. Package Breakage In order to prevent the package from being broken, observe the following instructions : - The CCD is a precise optical component and the package material is ceramic or plastic. Therefore, - Take care not to drop the device when mounting, handling, or transporting. - Avoid giving a shock to the package. Especially when leads are fixed to the socket or the circuit board, small shock could break the package more easily than when the package isn't fixed. - 2) When applying force for mounting the device or any other purposes, fix the leads between a joint and a stand-off, so that no stress will be given to the jointed part of the lead. In addition, when applying force, do it at a point below the stand-off part. (In the case of ceramic packages) The leads of the package are fixed with low melting point glass, so stress added to a lead could cause a crack in the low melting point glass in the jointed part of the lead. (In the case of plastic packages) The leads of the package are fixed with package body (plastic), so stress added to a lead could cause a crack in the package body (plastic) in the jointed part of the lead. - 3) When mounting the package on the housing, be sure that the package is not bent. - If a bent package is forced into place between a hard plate or the like, the package may be broken. - If any damage or breakage occurs on the surface of the glass cap, its characteristics could deteriorate. Therefore, - Do not hit the glass cap. - Do not give a shock large enough to cause distortion. - Do not scrub or scratch the glass surface. - Even a soft cloth or applicator, if dry, could cause flaws to scratch the glass. ## 2. Electrostatic Damage As compared with general MOS-LSI, CCD has lower ESD. Therefore, take the following antistatic measures when handling the CCD: - 1) Always discharge static electricity by grounding the human body and the instrument to be used. To ground the human body, provide resistance of about 1 $M\Omega$ between the human body and the ground to be on the safe side. - When directly handling the device with the fingers, hold the part without leads and do not touch any lead. - 3) To avoid generating static electricity, - a. do not scrub the glass surface with cloth or plastic. - b. do not attach any tape or labels. - c. do not clean the glass surface with dustcleaning tape. - 4) When storing or transporting the device, put it in a container of conductive material. ## 3. Dust and Contamination Dust or contamination on the glass surface could deteriorate the output characteristics or cause a scar. In order to minimize dust or contamination on the glass surface, take the following precautions: - 1) Handle the CCD in a clean environment such as a cleaned booth. (The cleanliness level should be, if possible, class 1 000 at least.) - 2) Do not touch the glass surface with the fingers. If dust or contamination gets on the glass surface, the following cleaning method is recommended: - Dust from static electricity should be blown off with an ionized air blower. For antielectrostatic measures, however, ground all the leads on the device before blowing off the dust. - The contamination on the glass surface should be wiped off with a clean applicator soaked in isopropyl alcohol. Wipe slowly and gently in one direction only. - Frequently replace the applicator and do not use the same applicator to clean more than one device. - Note: In most cases, dust and contamination are unavoidable, even before the device is first used. It is, therefore, recommended that the above procedures should be taken to wipe out dust and contamination before using the device. ## 4. Other - Soldering should be manually performed within 5 seconds at 350°C maximum at the tip of soldering iron. - Avoid using or storing the CCD at high temperature or high humidity as it is a precise optical component. Do not give a mechanical shock to the CCD. - 3)*Do not expose the device to strong light. For the color device, long exposure to strong light will fade the color of the color filters * Only for color devices